
50 C# Interview Questions and
Answers for 2019

Prepared by DevTeam.Space

DevTeam.Space is a data-driven agile
software development platform

Successful businesses and entrepreneurs

rely on DevTeam.Space for their most
innovative projects

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

C# developers are in high demand today. Entrepreneurs, managers and CTOs alike are all
competing to build the best C# and .NET applications. Knowing how to structure your interviews to
find the top developers will make sure you stay competitive. In this guide, you’ll find example
interview questions and answers to help you do exactly that.

First Things First: Select Your Job Requirements
The C# language can be used for countless different applications. To find the C# developer with the
right skills for your specific project you need to dig right down and define your job requirements.

Some example C# requirements include:

● Programming skills - E.g. Object Oriented Design
● C# specific skills - E.g. Multithreading
● .NET Library/toolkit experience
● Design skills - Performance optimization, building scalable applications, concurrency
● Communication skills - Discussing problems and constraints
● Initiative - If they’ll have to figure out solutions by themselves

It’s tempting to include as many skills as possible on the list for your perfect developer. However,
you’ll actually want to keep the list as short as possible. You want to focus your interview on
identifying depth of knowledge in areas that are most important to your project.

Once you know your job requirements, use them to pick the right questions for your interviews.

The questions in this guide are broken down into three categories – Junior, Mid-level, or Senior.
Some of the questions can overlap, but it’s important that you pay enough attention to the
specifics of each of the categories and arrange your interview accordingly.

● Junior Level Interview Questions
● Mid-Level Developer Interview Questions

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://docs.google.com/document/d/1e49ZTzkBkUhhogq6jQQoG3Hrg2LFNNepmVIbe1tru78/edit#heading=h.1fob9te
https://docs.google.com/document/d/1e49ZTzkBkUhhogq6jQQoG3Hrg2LFNNepmVIbe1tru78/edit#heading=h.moope4tjil1
https://devteam.space/

● Senior Developer Interview Questions

C# Basic Level Interview Questions

Skill RequSkill Requirements for Junior C# Developers

● Basic programming skills
● Object oriented programming
● Foundational C#/.NET knowledge
● Learning on the job
● Following instructions and receiving feedback
● Thinking like a programmer

Example C# Basic Interview Questions and Answers
Note: Important keywords are underlined in the answers. Bonus points if the candidate mentions
them!

Question 1: What is an Object and a Class?

Answer: A Class is an encapsulation of properties and methods that are used to represent a
real-time entity. It is a data structure that brings all the instances together in a single unit.

An Object in an instance of a Class. Technically, it is just a block of memory allocated that can be
stored in the form of Variables, Array or a Collection.

Question 2: What are the fundamental OOP concepts?

Answer: The four fundamental concepts of Object Oriented Programming are:

● Encapsulation – The Internal representation of an object is hidden from the view outside
object’s definition. Only the required information can be accessed, whereas the rest of the
data implementation is hidden.

● Abstraction – It is a process of identifying the critical behavior and data of an object and
eliminating the irrelevant details.

● Inheritance – It is the ability to create new classes from another class. It is done by
accessing, modifying and extending the behavior of objects in the parent class.

● Polymorphism – The name means, one name, many forms. It is achieved by having multiple
methods with the same name but different implementations.

Question 3: What is Managed and Unmanaged code?

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://docs.google.com/document/d/1e49ZTzkBkUhhogq6jQQoG3Hrg2LFNNepmVIbe1tru78/edit#heading=h.4d34og8
https://devteam.space/

Answer: Managed code is a code which is executed by the CLR (Common Language Runtime) i.e all
application code based on .Net Platform. It is considered as managed because of the .Net
framework which internally uses the garbage collector to clear up the unused memory.

Unmanaged code is any code that is executed by the application runtime of any other framework
apart from .Net. The application runtime will take care of memory, security and other performance
operations.

Question 4: What is an Interface?

Answer: An Interface is a class with no implementation. The only thing that it contains is the
declaration of methods, properties, and events.

Question 5: What are the different types of classes in C#?

Answer: The different types of class in C# are:

● Partial class – Allows its members to be divided or shared with multiple .cs files. It is denoted
by the keyword Partial.

● Sealed class – It is a class which cannot be inherited. To access the members of a sealed
class, we need to create the object of the class. It is denoted by the keyword Sealed.

● Abstract class – It is a class whose object cannot be instantiated. The class can only be
inherited. It should contain at least one method. It is denoted by the keyword abstract.

● Static class – It is a class which does not allow inheritance. The members of the class are
also static. It is denoted by the keyword static. This keyword tells the compiler to check for
any accidental instances of the static class.

Question 6: Explain Code compilation in C#.

Answer: There are four steps in code compilation, which include:

● Compiling the source code into Managed code by C# compiler.
● Combining the newly created code into assemblies.
● Loading the Common Language Runtime(CLR).
● Executing the assembly by CLR.

Question 7: What are the differences between a Class and a Struct?

Answer: Given below are the differences between a Class and a Struct:

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Class Struct

Supports Inheritance Does not support Inheritance

Class is Pass by reference (reference type) Struct is Pass by Copy (Value type)

Members are private by default Members are public by default

Good for larger complex objects Good for Small isolated models

Can use waste collector for memory
management

Cannot use Garbage collector and hence no
Memory management

Question 8: What is the difference between Virtual method and Abstract method?

Answer: A Virtual method must always have a default implementation. However, it can be
overridden in the derived class, though not mandatory. It can be overridden using override keyword.

An Abstract method does not have an implementation. It resides in the abstract class. It is
mandatory that the derived class implements the abstract method. An override keyword is not
necessary here though it can be used.

Question 9: Explain Namespaces in C#.

Answer: They are used to organize large code projects. “System” is the most widely used
namespace in C#. We can create our own namespace and use one namespace in another, which
are called Nested Namespaces.
They are denoted by the keyword “namespace”.

Question 10: What is “using” statement in C#?

Answer: “Using” Keyword denotes that the particular namespace is being used by the program.
For Example, using System. Here System is a namespace. The class Console is defined under
System. So we can use the console.writeline (“….”) or readline in our program.

Question 11: Explain Abstraction.

Answer: Abstraction is one of the OOP concepts. It is used to display only the essential features of
the class and hides the unnecessary information.

Let us take an Example of a Car:

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

A driver of the car should know the details about the Car such as color, name, mirror, steering, gear,
brake, etc. What he doesn’t have to know is an Internal engine, Exhaust system.

So, Abstraction helps in knowing what is necessary and hiding the internal details from the outside
world. Hiding of the internal information can be achieved by declaring such parameters as Private
using the private keyword.

Question 12: Explain Polymorphism?

Answer: Programmatically, Polymorphism means same method but different implementations. It is of
2 types, Compile-time and Runtime.

Compile time polymorphism is achieved by operator overloading.

Runtime polymorphism is achieved by overriding. Inheritance and Virtual functions are used during
Runtime Polymorphism.

For Example, If a class has a method Void Add(), polymorphism is achieved by Overloading the
method, that is, void Add(int a, int b), void Add(int add) are all overloaded methods.

Question 13: How is Exception Handling implemented in C#?

Answer: Exception handling is done using four keywords in C#:

● try – Contains a block of code for which an exception will be checked.
● catch – It is a program that catches an exception with the help of exception handler.
● finally – It is a block of code written to execute regardless if an exception is caught or not.
● Throw – Throws an exception when a problem occurs.

Question 14: What are C# I/O Classes? What are the commonly used I/O Classes?

Answer: C# has System.IO namespace, consisting of classes that are used to perform various
operations on files like creating, deleting, opening, closing etc.

Some commonly used I/O classes are:

● File – Helps in manipulating a file.
● StreamWriter – Used for writing characters to a stream.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

● StreamReader – Used for reading characters to a stream.
● StringWriter – Used for reading a string buffer.
● StringReader – Used for writing a string buffer.
● Path – Used for performing operations related to path information.

Question 15: What is StreamReader/StreamWriter class?

Answer: StreamReader and StreamWriter are classes of namespace System.IO. They are used when
we want to read or write charact90, Reader-based data, respectively.
Some of the members of StreamReader are: Close(), Read(), Readline().
Members of StreamWriter are: Close(), Write(), Writeline().

Class Program1
{
using(StreamReader sr = new StreamReader(“C:\ReadMe.txt”)
{
//----------------code to read-------------------//
}
using(StreamWriter sw = new StreamWriter(“C:\ReadMe.txt”))
{
//-------------code to write-------------------//
}
}

Question 16: What is a Destructor in C#?

Answer: A Destructor is used to clean up the memory and free the resources. But in C# this is done
by the garbage collector on its own. System.GC.Collect() is called internally for cleaning up. But
sometimes it may be necessary to implement destructors manually.

For Example:

~Car()
{
Console.writeline(“….”);
}

Question 17: What is an Abstract Class?

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Answer: An Abstract class is a class which is denoted by abstract keyword and can be used only as
a Base class. An Abstract class should always be inherited. An instance of the class itself cannot be
created. If we do not want any program to create an object of a class, then such classes can be
made abstract.

Any method in the abstract class does not have implementations in the same class. But they must
be implemented in the child class.

For Example:

abstract class AB1
{
Public void Add();
}
Class childClass : AB1
{
childClass cs = new childClass ();
int Sum = cs.Add();
}

All the methods in an abstract class are implicitly virtual methods. Hence virtual keyword should not
be used with any methods in abstract class.

Example C# Mid-Level Interview Questions and Answers

Next we have interview questions and answers for experienced C# developers. Mid-level
developers are the workhorses of the software development world. Whatever system and apps
you’re using, chances are that most of the code was written, checked and tested by a mid-level
developer.

Skip to the Senior developer section for the Java advanced interview questions.

Question 18: What are Boxing and Unboxing?

Answer: Converting a value type to reference type is called Boxing.
For Example:

int Value1 -= 10;
//————Boxing——————//
object boxedValue = Value1;

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://docs.google.com/document/d/1e49ZTzkBkUhhogq6jQQoG3Hrg2LFNNepmVIbe1tru78/edit#heading=h.4d34og8
https://devteam.space/

Explicit conversion of same reference type (created by boxing) back to value type is called
Unboxing.

For Example:
//————UnBoxing——————//
int UnBoxing = int (boxedValue);

Question 19: What is the difference between Continue and Break Statement?

Answer: Break statement breaks the loop. It makes the control of the program to exit the loop.
Continue statement makes the control of the program to exit only the current iteration. It does not
break the loop.

Question 20: What is the difference between finally and finalize block?

Answer: Finally block is called after the execution of try and catch block. It is used for exception
handling. Regardless of whether an exception is caught or not, this block of code will be executed.
Usually, this block will have clean-up code.

Finalize method is called just before garbage collection. It is used to perform clean up operations of
Unmanaged code. It is automatically called when a given instance is not subsequently called.

Questions on Arrays and Strings

Question 21: What is an Array? Give the syntax for a single and multi-dimensional array?

Answer: An Array is used to store multiple variables of the same type. It is a collection of variables
stored in a contiguous memory location.

For Example:

double numbers = new double[10];

int[] score = new int[4] {25,24,23,25};

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

A Single dimensional array is a linear array where the variables are stored in a single row. Above
example is a Single dimensional array.

Arrays can have more than one dimension. Multidimensional arrays are also called rectangular
arrays.

For Example, int[,] numbers = new int[3,2] { {1,2} ,{2,3},{3,4} };

Question 22: What is a Jagged Array?

Answer: A Jagged array is an array whose elements are arrays. It is also called an array of arrays. It
can be either single or multiple dimensions.

int[] jaggedArray = new int[4][];

Question 23: Name some properties of Array.

Answer: Properties of an Array include:

● Length – Gets the total number of elements in an array.
● IsFixedSize – Tells whether the array is fixed in size or not.
● IsReadOnly – Tells whether the array is read-only or not.

Question 24: What is an Array Class?

Answer: An Array class is the base class for all arrays. It provides many properties and methods. It is
present in the namespace System.

Question 25: What is a String? What are the properties of a String Class?

Answer: A String is a collection of char objects. We can also declare string variables in c#.

string name = “C# Questions”;

A string class in C# represents a string.

The properties of String class are Chars and Length.
Chars get the Char object in the current String.
Length gets the number of objects in the current String.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Question 26: What is an Escape Sequence? Name some String escape sequences in C#.

Answer: An Escape sequence is denoted by a backslash (\). The backslash indicates that the
character that follows it should be interpreted literally or it is a special character. An escape
sequence is considered as a single character.

String escape sequences are as follows:

\n – Newline character
\b – Backspace
\\ – Backslash
\’ – Single quote
\’’ – Double Quote

Question 27: What are Regular expressions? Search a string using regular expressions?

Answer: Regular expression is a template to match a set of input. The pattern can consist of
operators, constructs or character literals. Regex is used for string parsing and replacing the
character string.

For Example:

* matches the preceding character zero or more times. So, a*b regex is equivalent to b, ab,
aab, aaab and so on.
Searching a string using Regex
static void Main(string[] args)
{
string[] languages = { "C#", "Python", "Java" };
foreach(string s in languages)
{
if(System.Text.RegularExpressions.Regex.IsMatch(s,"Python"))
{
Console.WriteLine("Match found");
}
}
}

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

The above example searches for “Python” against the set of inputs from the languages array. It uses
Regex.IsMatch which returns true in case if the pattern is found in the input. The pattern can be any
regular expression representing the input that we want to match.

Question 28: What are the basic String Operations? Explain.

Answer: Some of the basic string operations are:

● Concatenate –Two strings can be concatenated either by using System.String.Concat or by
using + operator.

● Modify – Replace(a,b) is used to replace a string with another string. Trim() is used to trim the
string at the end or at the beginning.

● Compare – System.StringComparison() is used to compare two strings, either case-sensitive
comparison or not case sensitive. Mainly takes two parameters, original string, and string to
be compared with.

● Search – StartWith, EndsWith methods are used to search a particular string.

Question 29: What is Parsing? How to Parse a Date Time String?

Answer: Parsing is converting a string into another data type.

For Example:

string text = “500”;

int num = int.Parse(text);

500 is an integer. So, Parse method converts the string 500 into its own base type, i.e int.

Follow the same method to convert a DateTime string.
string dateTime = “Jan 1, 2018”;
DateTime parsedValue = DateTime.Parse(dateTime);

C# Expert Level Interview Questions
This section contains some more technical interview questions and answers for experienced C#
developers. Use these to test if your candidates can design and build quality applications using C#.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Skill Requirements for Senior C# Developers
● Expert C# and .NET knowledge
● Data structures and Object Oriented design patterns
● Designing for specific requirements (e.g. security, scalability)
● Maintaining and upgrading applications
● DevOps, continuous delivery
● Efficient programming and clean code
● Asynchronous programming
● Debugging
● Testing
● Leadership skills
● Clear communication skills

Example C# Advanced Interview Questions and Answers

Question 30: What is a Delegate? Explain.

Answer: A Delegate is a variable that holds the reference to a method. Hence it is a function pointer
of reference type. All Delegates are derived from System.Delegate namespace. Both Delegate and
the method that it refers to can have the same signature.

Declaring a delegate: public delegate void AddNumbers(int n);

After the declaration of a delegate, the object must be created of the delegate using the new
keyword.

AddNumbers an1 = new AddNumbers(number);

The delegate provides a kind of encapsulation to the reference method, which will internally get
called when a delegate is called.

public delegate int myDel(int number);
public class Program
{
public int AddNumbers(int a)
{
int Sum = a + 10;
return Sum;
}
public void Start()

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

{
myDel DelgateExample = AddNumbers;
}
}

In the above example, we have a delegate myDel which takes an integer value as a parameter.
Class Program has a method of the same signature as the delegate, called AddNumbers().

If there is another method called Start() which creates an object of the delegate, then the object can
be assigned to AddNumbers as it has the same signature as that of the delegate.

Question 31: What are Events?

Answer: Events are user actions that generate notifications to the application to which it must
respond. The user actions can be mouse movements, keypress and so on.

Programmatically, a class that raises an event is called a publisher and a class which
responds/receives the event is called a subscriber. An Event should have at least one subscriber
else that event is never raised.

Delegates are used to declare Events.

Public delegate void PrintNumbers();

Event PrintNumbers myEvent;

Question 32: How to use Delegates with Events?

Answer: Delegates are used to raise events and handle them. Always a delegate needs to be
declared first and then the Events are declared.

Let us see an Example:

Consider a class called Patient. Consider two other classes, Insurance, and Bank which requires
Death information of the Patient from patient class. Here, Insurance and Bank are the subscribers
and the Patient class becomes the Publisher. It triggers the death event and the other two classes
should receive the event.

namespace ConsoleApp2
{

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

public class Patient
{
public delegate void deathInfo();//Declaring a Delegate//
public event deathInfo deathDate;//Declaring the event//
public void Death()
{
deathDate();
}
}
public class Insurance
{
Patient myPat = new Patient();
void GetDeathDetails()
{
//-------Do Something with the deathDate event------------//
}
void Main()
{
//--------Subscribe the function GetDeathDetails----------//
myPat.deathDate += GetDeathDetails;
}
}
public class Bank
{
Patient myPat = new Patient();
void GetPatInfo ()
{
//-------Do Something with the deathDate event------------//
}
void Main()
{
//--------Subscribe the function GetPatInfo ----------//
myPat.deathDate += GetPatInfo;
}
}
}

Question 33: What are the different types of Delegates?

Answer: The Different types of Delegates are:

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Single Delegate – A delegate which can call a single method.

Multicast Delegate – A delegate which can call multiple methods. + and – operators are used to
subscribe and unsubscribe respectively.

Generic Delegate – It does not require an instance of delegate to be defined. It is of three types,
Action, Funcs and Predicate.

● Action– In the above example of delegates and events, we can replace the definition of
delegate and event using Action keyword. The Action delegate defines a method that can
be called on arguments but does not return a result

Public delegate void deathInfo();

Public event deathInfo deathDate;

//Replacing with Action//

Public event Action deathDate;

Action implicitly refers to a delegate.

● Func – A Func delegate defines a method that can be called on arguments and returns a
result.

Func <int, string, bool> myDel is same as delegate bool myDel(int a, string b);

● Predicate – Defines a method that can be called on arguments and always returns the bool.

Predicate<string> myDel is same as delegate bool myDel(string s);

Question 34: What do Multicast Delegates mean?

Answer: A Delegate that points to more than one method is called a Multicast Delegate. Multicasting
is achieved by using + and += operator.

Consider the Example from question 32.

There are two subscribers for deathEvent, GetPatInfo, and GetDeathDetails. And hence we have
used += operator. It means whenever the myDel is called, both the subscribers get called. The
delegates will be called in the order in which they are added.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Question 35: Explain Publishers and Subscribers in Events.

Answer: A Publisher is a class responsible for publishing a message of different types of other
classes. The message is nothing but Event as discussed in the above questions.

From the Example in Question 32, Class Patient is the Publisher class. It is generating an Event
deathEvent, which the other classes receive.

Subscribers capture the message of the type that it is interested in. Again, from the Example of
Question 32, Class Insurance and Bank are Subscribers. They are interested in event deathEvent of
type void.

Question 36: What are Synchronous and Asynchronous operations?

Answer: Synchronization is a way to create a thread-safe code where only one thread can access
the resource at any given time.

Asynchronous call waits for the method to complete before continuing with the program flow.
Synchronous programming badly affects the UI operations, when the user tries to perform
time-consuming operations since only one thread will be used.

In Asynchronous operation, the method call will immediately return so that the program can perform
other operations while the called method completes its work in certain situations.

In C#, Async and Await keywords are used to achieve asynchronous programming. Look at

Question 43 for more details on synchronous programming.

Question 37: What is Reflection in C#?

Answer: Reflection is the ability of code to access the metadata of the assembly during runtime. A
program reflects upon itself and uses the metadata to inform the user or modify its behavior.
Metadata refers to information about objects, methods.

The namespace System.Reflection contains methods and classes that manage the information of all
the loaded types and methods. It is mainly used for windows applications, for Example, to view the
properties of a button in a windows form.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

The MemberInfo object of the class reflection is used to discover the attributes associated with a
class.

Reflection is implemented in two steps, first, we get the type of the object, and then we use the type
to identify members such as methods and properties.

To get the type of a class, we can simply use

Type mytype = myClass.GetType();

Once we have a type of class, the other information of the class can be easily accessed.

System.Reflection.MemberInfo Info = mytype.GetMethod(“AddNumbers”);

Above statement tries to find a method with name AddNumbers in the class myClass.

Question 38: What is a Generic Class?

Answer: Generics or Generic class is used to create classes or objects which do not have any
specific data type. The data type can be assigned during runtime, i.e when it is used in the program.

For Example:

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

So, from the above code, we see 2 compare methods initially, to compare string and int.

In case of other data type parameter comparisons, instead of creating many overloaded methods,
we can create a generic class and pass a substitute data type, i.e T. So, T acts as a datatype until it is
used specifically in the Main() method.

Question 39: Explain Get and Set Accessor properties?

Answer: Get and Set are called Accessors. These are made use by Properties. A property provides
a mechanism to read, write the value of a private field. For accessing that private field, these
accessors are used.

Get Property is used to return the value of a property
Set Property accessor is used to set the value.

The usage of get and set is as below:

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Question 40: What is a Thread? What is Multithreading?

Answer: A Thread is a set of instructions that can be executed, which will enable our program to
perform concurrent processing. Concurrent processing helps us do more than one operation at a
time. By default, C# has only one thread. But the other threads can be created to execute the code
in parallel with the original thread.

Thread has a life cycle. It starts whenever a thread class is created and is terminated after the
execution. System.Threading is the namespace which needs to be included to create threads and
use its members.

Threads are created by extending the Thread Class. Start() method is used to begin thread
execution.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

//CallThread is the target method//
 ThreadStart methodThread = new ThreadStart(CallThread);
 Thread childThread = new Thread(methodThread);
 childThread.Start();

C# can execute more than one task at a time. This is done by handling different processes by
different threads. This is called MultiThreading.

There are several thread methods that are used to handle the multi-threaded operations:

Start, Sleep, Abort, Suspend, Resume and Join.

Most of these methods are self-explanatory.

Question 41: Name some properties of Thread Class.

Answer: Few Properties of thread class are:

● IsAlive – contains value True when a thread is Active.
● Name – Can return the name of the thread. Also, can set a name for the thread.
● Priority – returns the prioritized value of the task set by the operating system.
● IsBackground – gets or sets a value which indicates whether a thread should be a

background process or foreground.
● ThreadState– describes the thread state.

Question 42: What are the different states of a Thread?

Answer: Different states of a thread are:

● Unstarted – Thread is created.
● Running – Thread starts execution.
● WaitSleepJoin – Thread calls sleep, calls wait on another object and calls join on another

thread.
● Suspended – Thread has been suspended.
● Aborted – Thread is dead but not changed to state stopped.
● Stopped – Thread has stopped.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Question 43: What are Async and Await?

Answer: Async and Await keywords are used to create asynchronous methods in C.
Asynchronous programming means that the process runs independently of main or other processes.
Usage of Async and Await is as shown below:

● Async keyword is used for the method declaration.
● The count is of a task of type int which calls the method CalculateCount().
● Calculatecount() starts execution and calculates something.
● Independent work is done on my thread and then await count statement is reached.
● If the Calculatecount is not finished, myMethod will return to its calling method, thus the main

thread doesn’t get blocked.
● If the Calculatecount is already finished, then we have the result available when the control

reaches await count. So the next step will continue in the same thread. However, it is not the
situation in the above case where Delay of 1 second is involved.

Question 44: What is a Deadlock?

Answer: A Deadlock is a situation where a process is not able to complete its execution because
two or more processes are waiting for each other to finish. This usually occurs in multi-threading.

Here a Shared resource is being held by a process and another process is waiting for the first
process to release it and the thread holding the locked item is waiting for another process to
complete.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Consider the below Example:

● Perform tasks accesses objB and waits for 1 second.
● Meanwhile, PerformtaskB tries to access ObjA.
● After 1 second, PeformtaskA tries to access ObjA which is locked by PerformtaskB.
● PerformtaskB tries to access ObjB which is locked by PerformtaskA.

This creates Deadlock.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Question 45: Explain Lock, Monitors, and Mutex Object in Threading.

Answer: Lock keyword ensures that only one thread can enter a particular section of the code at
any given time. In the above Example, lock(ObjA) means the lock is placed on ObjA until this
process releases it, no other thread can access ObjA.

A Mutex is also like a lock but it can work across multiple processes at a time. WaitOne() is used to
lock and ReleaseMutex() is used to release the lock. But Mutex is slower than lock as it takes time to
acquire and release it.

Monitor.Enter and Monitor.Exit implements lock internally. a lock is a shortcut for Monitors. lock(objA)
internally calls.

Monitor.Enter(ObjA);
try
{
}
Finally {Monitor.Exit(ObjA));}

Question 46: What is a Race Condition?

Answer: A Race condition occurs when two threads access the same resource and are trying to
change it at the same time. The thread which will be able to access the resource first cannot be
predicted.

If we have two threads, T1 and T2, and they are trying to access a shared resource called X. And if
both the threads try to write a value to X, the last value written to X will be saved.

Question 47: What is Thread Pooling?

Answer: A Thread pool is a collection of threads. These threads can be used to perform tasks
without disturbing the primary thread. Once the thread completes the task, the thread returns to the
pool.

System.Threading.ThreadPool namespace has classes which manage the threads in the pool and its
operations.

System.Threading.ThreadPool.QueueUserWorkItem(new
System.Threading.WaitCallback(SomeTask));

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

The above line queues a task. SomeTask methods should have a parameter of type Object.

Question 48: What is Serialization?

Answer: Serialization is a process of converting code to its binary format. Once it is converted to
bytes, it can be easily stored and written to a disk or any such storage devices. Serializations are
mainly useful when we do not want to lose the original form of the code and it can be retrieved
anytime in the future.

Any class which is marked with the attribute [Serializable] will be converted to its binary form.

The reverse process of getting the c# code back from the binary form is called Deserialization.

To Serialize an object we need the object to be serialized, a stream which can contain the serialized
object and namespace System.Runtime.Serialization can contain classes for serialization.

Question 49: What are the types of Serialization?

Answer: The different types of Serialization are: XML serialization, SOAP, and Binary.

● XML serialization – It serializes all the public properties to the XML document. Since the data
is in XML format, it can be easily read and manipulated in various formats. The classes reside
in System.sml.Serialization.

● SOAP – Classes reside in System.Runtime.Serialization. Similar to XML but produces a
complete SOAP compliant envelope which can be used by any system that understands
SOAP.

● Binary Serialization – Allows any code to be converted to its binary form. Can serialize and
restore public and non-public properties. It is faster and occupies less space.

Question 50: What is an XSD file?

Answer: An XSD file stands for XML Schema Definition. It gives a structure for the XML file. It means
it decides the elements that the XML should have and in what order and what properties should be
present. Without an XSD file associated with XML, the XML can have any tags, any attributes, and
any elements.

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Xsd.exe tool converts the files to XSD format. During Serialization of C# code, the classes are
converted to XSD compliant format by xsd.exe.

Summary

Your ability to identify and hire the best C# developers will ultimately determine the success of your
project. Just keep in mind, C# is an incredibly diverse language, and you probably don’t need the
perfect C# developer to get your job done right.

Use these sample and typical interview questions on C# to pick out the candidate with exactly the
right skill set to get your project done right, and within your budget.

Finally, you can simply print out this ready-to-use cheat sheet of questions and answers and bring it
with you to the interview. your candidates.

Happy Hiring!

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://devteam.space/

Hear From DevTeam.Space Clients

DevTeam.Space team is proactive, drawing on operating experience to understand not only your
vision but also its purpose; they are skilled, making the right judgment calls and iterating quickly;
and they get customer service, providing honest counsel on cost-benefit and real-time process

transparency. I highly recommend DTS and look forward to working with them again!
Investment Fund / Website development

NIC POULOS – Bowery Capital

DevTeam.Space has been a great support to us. We needed help with frontend specific projects for

a big release. They came on board, with almost no time taken in ramping up with our code base
and were able to deliver on time! For fast, effective service, contact DevTeam.Space.

Consumer Services / Frontend
RAHUL THATHOO – MyTime

We had 5 projects and 3 different development teams across multiple tech stacks. One dashboard
to navigate all the projects, two project managers, daily updates directly from developers, blockers

tracking, and daily stand-up calls have created a productive atmosphere and helped us to move
much quicker. If you are looking for high-end software outsourcing services - look no further.

Property management / Backend Infrastructure / Data
JASON JOU – SenStay

Working with DevTeam.Space was a positive and professional experience from the start. They had

all the tools in place to support Agile Scrum project management, communicated daily via the
dashboard, delivered their Sprints on time, and stayed on top of project blockers. I look forward to

working with them again!
Fintech / Backend / Frontend

TONY AMOS - Principis Capital

Successful Businesses and Entrepreneurs

Rely on DevTeam.Space
for Their Most Innovative Projects

GET STARTED >

Tell us about your challenge & get a free strategy session

● mail@devteam.space ● 415-570-7043 ● https://devteam.space

 © DevTeam.Space

https://www.devteam.space/get_started/step_1?utm_source=interview%20articles&utm_medium=pdf_banner&utm_campaign=C%23_2019
https://devteam.space/

